If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-13x^2+54x+147=0
a = -13; b = 54; c = +147;
Δ = b2-4ac
Δ = 542-4·(-13)·147
Δ = 10560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10560}=\sqrt{64*165}=\sqrt{64}*\sqrt{165}=8\sqrt{165}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-8\sqrt{165}}{2*-13}=\frac{-54-8\sqrt{165}}{-26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+8\sqrt{165}}{2*-13}=\frac{-54+8\sqrt{165}}{-26} $
| 21+3j=8-3j | | 3+h/6=7 | | -6(-6-8k)=4K-8 | | 17.5=7x+14 | | k/3=3=8 | | n+17=2(3+4) | | 22x+24.50=47x+18.25 | | -3(4x-2)=-12+-6 | | n-(-12)=-3 | | 3.1y-41=3y-17-4.1y | | 12-2m=2m-8 | | 3-4/7x=11 | | 5(x-6)^2=-80 | | XxY=-14 | | 6k=(2k-4) | | -4(1-4m)=-20+8m | | 10=5x+10 | | 1.3y-41=3y-17-4.11 | | -3(4x-2)=12x+-6 | | 5(x-6)^2+180=100 | | 2/5m-8/5=4/5 | | -12.42=0.03x | | -0.1035=23x | | x+8x3=8x-5x | | -0.007x=0.2002 | | 9(4-x)=26+4x | | 83=-5(5-4x)-2x | | -4+5(2-3m)=-84 | | 0.546=0.42x | | 2y+14=4y | | x+8=(3x-40) | | (x+5)(x-7)+2x=0 |